Objectives

Program Purpose

• Analyse numbers for primeness and factors
• List all primes up to a given number
• List all factors of a given number

Learning Goals

• Use of Functions and User-Defined Functions
• Use of Modulus
• More complex algorithms
• Use of ReDim to dynamically declare array size

Design Notes

This program is more of a challenge than the previous ones. To determine if a number is prime, we need to check each integer up to the square root of the number to see if it is a factor. If the number 1 is the only factor, then the original number is prime.

There are many websites devoted to the challenge of finding bigger and bigger prime numbers. It is an interesting mathematical challenge, and as computing power increases, the boundaries are continually pushed further back. Maybe you will discover the largest prime known to humanity!

A function is different from a normal procedure in that it returns a value. In this project we create our own functions:

a. Square() - which determines if a number is a Square number
b. Prime() - which determines if a number is Prime.

We also use the pre-defined Function Sqr(), which determines the Square root of a number.

The Mod operator is used throughout to test for remainders and hence to find out if a number is a factor or not. e.g. 10 Mod 3 = 1 - the remainder after dividing 10 by 3 is 1, therefore 3 is not a factor of 10.

There are many ways to improve the coding used in this project. For teaching purposes, we have tried to keep things relatively simple. You may find more efficient methods. Good luck!

Interface

Create the interface as shown.
Use 1 form, 2 list boxes, 7 labels, 1 text box and 1 command button.
Names of Objects

<table>
<thead>
<tr>
<th>Type of Object</th>
<th>Number</th>
<th>Names of Objects</th>
<th>Simple Initial Properties of Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>1</td>
<td>Form1</td>
<td>Caption - "Prime Number Checker 1"</td>
</tr>
<tr>
<td>List Box</td>
<td>2</td>
<td>lstFactors, lstPrimes</td>
<td>Font - Bold, 12 Columns - 5</td>
</tr>
<tr>
<td>Command Buttons</td>
<td>1</td>
<td>cmdCheck</td>
<td>Font Bold, 12 Caption - &Check Prime</td>
</tr>
<tr>
<td>Test Box</td>
<td>1</td>
<td>Text1</td>
<td>Font - Bold, 12 Text - 7560</td>
</tr>
<tr>
<td>Labels</td>
<td>7</td>
<td>lblPrime, lblComposite</td>
<td>Font - Bold, 12 Visible - False Caption "Prime" BackColor - Green Backstyle - Opaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lblTimeTaken, lblLastPrime, lblNumFactors</td>
<td>Font - Bold, 12 Captions "" Borderstyle - Fixed Single Backstyle - Opaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Label1, Label2</td>
<td>Caption - "Highest Prime" Caption - "Primes Up to That Number"</td>
</tr>
</tbody>
</table>

Code

GENERAL SECTION

Dim Primes() As Long
Dim NumPrimes As Long
Const ProgramLimit = 385639

Sub wait(x As Single)
Dim y As Single
y = Timer
While x + y > Timer
 DoEvents
Wend
End Sub

Sub addtoprimearray(primeNum As Long)
 NumPrimes = NumPrimes + 1
 ReDim Preserve Primes(NumPrimes)
 Primes(NumPrimes) = primeNum
End Sub

Sub CheckPrimes(Limit As Long)
Dim n As Long
n = 1
While n <= Limit And n < ProgramLimit
 If Prime(n) Then
 lblLastPrime.Caption = n
 lstPrimes.AddItem n
 addtoprimearray n
 End If
 n = n + 1
Wend
If Prime(Limit) Then
 lblPrime.Visible = True
 lblComposite.Visible = False
Else
 lblPrime.Visible = False
 lblComposite.Visible = True
End If
End Sub
Function Prime(n As Long) As Integer

 Dim i As Integer
 Prime = True
 i = 2
 While Prime And i <= Sqr(n)
 If n = Primes(i) Then
 Prime = True
 Else
 If n Mod i <> 0 Then
 If Not Square(n) Then
 i = i + 1
 Prime = False
 Else
 Prime = False
 End If
 Else
 Prime = False
 End If
 End If
 Wend
End Function

Function Square(x As Long) As Boolean

 If Sqr(x) = Int(Sqr(x)) Then
 Square = True
 Else
 Square = False
 End If
End Function

Private Sub DisplayFactors(max As Integer)

 Dim i As Integer
 lblNumFactors.Caption = 0
 For i = 1 To max
 If max Mod i = 0 Then
 lstFactors.AddItem i
 lblNumFactors.Caption = lblNumFactors.Caption + 1
 End If
 Next i
End Sub
EVENTS

Private Sub cmdCheck_Click()
Dim start As Single
MousePointer = 11
start = Timer
lstPrimes.Clear
lstFactors.Clear
CheckPrimes Val(Text1.Text)
lblTimeTaken.Caption = Format(Timer - start, "###.###") & " sec"
DisplayFactors (Val(Text1.Text))
MousePointer = 0
End Sub

Private Sub Form_Load()
NumPrimes = 0
End Sub

Private Sub Text1_Change()
If Trim(Text1.Text) <> "" Then
If Val(Text1.Text) < 1 Or Val(Text1.Text) > ProgramLimit Then
 Beep
 lblTimeTaken.Caption = "Outside Limits"
 Text1.Locked = True
 wait 2
 lblTimeTaken.Caption = ""
 Text1.Text = ""
 Text1.Locked = False
End If
End If
End Sub

Consolidation & Extension

1. Which procedures are Functions?
2. Which built-in Functions are used?
3. What does the instruction 'MousePointer = 11' do?
4. What is Mod used for?
5. What does the 'text1_Change' Event do?
6. Explain in plain English the function of the 'CheckPrime' Algorithm.
7. Explain the function of the 'Square' Algorithm.
8. Some of the code is not very efficient. Which sections could be optimised?